- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kang, Sungsu (2)
-
Park, Jungwon (2)
-
Bloom, Ruth S. (1)
-
Bustillo, Karen C. (1)
-
Cheng, Fanrui (1)
-
Ciston, Jim (1)
-
Ercius, Peter (1)
-
Ham, Jimin (1)
-
Heo, Taeyeong (1)
-
Hong, Sukjoon (1)
-
Hwang, Sang-Yeon (1)
-
Jeon, Sungho (1)
-
Kang, Min-Ho (1)
-
Kim, Ji Soo (1)
-
Kim, Joodeok (1)
-
Kim, Kwanpyo (1)
-
Kim, Sungin (1)
-
Kim, Woo Youn (1)
-
Lee, Won Chul (1)
-
Lim, Joowon (1)
-
- Filter by Editor
-
-
Chen, Qian (1)
-
Zhang, Xin (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Qian; Zhang, Xin (Ed.)Abstract Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly.In situliquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by thein situliquid phase TEM. Furthermore, we showcasein situliquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained fromin situliquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices. Graphical abstractmore » « less
-
Jeon, Sungho; Heo, Taeyeong; Hwang, Sang-Yeon; Ciston, Jim; Bustillo, Karen C.; Reed, Bryan W.; Ham, Jimin; Kang, Sungsu; Kim, Sungin; Lim, Joowon; et al (, Science)Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization.more » « less
An official website of the United States government
